JOULE LOSS DUE TO COMPRESSIBILITY OF GAS
IN A CHANNEL OF VARIABLE SECTION

A. B. Vatazhin

It is known that closed electric currents arise in a conducting medium moving in a non-
uniform magnetic field. These currents lead to additional energy loss and adversely af-

fect the characteristics of magnetohydrodynamic channels. (The numerous investiga-

tions of these effects are dealt with in the review [2, 3].) Eddy electric currents are

also formed, however, when a medium flows in a uniform magnetic field perpendicular to the
to the plane of motion if the channel has a variable cross section and the medium is
compressible {1]. This paper is devoted to an investigation of some features of these

flows. 1t is assumed in the analysis that the gas flows in channels whose geometry

varies slightly.

1. We consgider the movement of a conducting, nonviscous, and nonheat-conducting gas in a plane
channel |x*|< e, h,(xY) <y< h*+h2(x°) (hy=const > 0) in the presence of a uniform transverse magnetic field
B=0,0,B,). We assume that the induced magnetic field can be neglected, the electrical conductivity ¢ and
the Hall parameter 8 for electrons are constant, and the sliding of ions is not significant. We assume that
the top and bottom walls of the channel deviate slightly from the surfaces y=h, and y=0, respectively, and
these deviations vary slowly along the flow. This condition is written mathematically in the following way:

h- o’ _ h2 o 3
BE) — of (), 2L =t () (o= ) 1.1)
Here € =const is a small parameter characterizing the deviation of the geometry from a channel of

constant cross section and the functions f~, f+, and their derivatives are of order of unity. We will assume
that functions ™ and /7 are zero when x=— «{and are bounded when x= ).

Henceforth we will consider flows characterized by a uniform distribution of gasdynamic parameters
when x=—«. If the channel cross section does not change with x’ (the flow occurs in a channel 0 <y’ hy,
these uniform distributions of parameters will be preserved in any cross section. In this there will be
separation of the electric charge in the channel, and the density j of the electric current will be zero.

When the channel cross section varies with Xo, electric currents arise in the moving gas (the param-
eters of which are nonuniform) and electromagnetic forces begin to act on the gas. If the channel geometry
satisfies conditions (1.1) the deviations of the gasdynamic parameters from the uniform distributions at
x=—= and the electric currents (and forces) arising are of the order of €. Thus, magnetogasdynamic equa-
tions can be linearized with respect to € near the solution for a channel of constant section, which, as
was mentioned above, has the form

u=1, v=0, p=1, p=p, =const,p = —y, j.,=0,j,=0. (1.2)
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Here and henceforth the values of the axial and transverse velocities u and v relate to the character-
istic velocity U, the components jx and jy to cUBy/c {c is the speed of light in vacuum), the electric poten-
tial to UBh,/c, the density p and pressure p to p« and pU%(ox is the characteristic density), and the coordi-
nates x and y to the height h,.

The solution of the problem can be sought in the form of the following series in powers of ¢:

=1 feu (2, ) +... v=28v(z,9) +.
=1 +epy(zy) .., P ="Px +ep1 (T Y) + ...
<p=—y+scp1(x,y)+---, i= ez, ) +- .. 1.3)

Substituting (1.3) in the system of magnetogasdynamic equations and using assumptions adopted for
the first approximation, we find the following system of equations:

Bu a v 6p .
2B, =S
691 Ouy 61;1 op ___1_ opr
+ 5 ox + ’ oz M? ox =0,
. GB* 2hy . ~/2
(3 = U M = (vp,) (1.4)

o 22 s )

= ot [ 5~ 62—
U | W (1.5)

In (1.4) the first two relationships will be the projections of the momentum equation on the x- and
y-axes, the third expression will be the continuity equation, and the fourth the energy equation. according
to which the entropy of the gas is constant within a first approximation. It follows that the Joule dissipa-
tion is a quantity of the order of £2.

The dimensionless quantities s and M are the parameters of magnetogasdynamic interaction and Mach
number.

The relationships in (1.5) are derived from Ohm's law and the continuity equation for the electric
current.

It follows from the first two equations of (1.3) and the last relationship in (1.5) that

dm __61:1__2}_
#=0 (=R 1.6)

Here w is the vorticity.

Since w=0 when x=—¢, then, according to (1.6), the flow in the channel will be vortex-free and we
can introduce a velocity potential

MTwmr VT T (1.7)

After simple transformations we obtain equations for functions & and ¢ from (1.4)~-(1.5):
(1—1142)";—:’2-+"’;%=13f;[ +2 +B(6¢1 %ﬂ;’)] 1.8)
Ag, == BAD. (1.9

We assume that the channel walls are ideal insulators and impermeable to the gas. After lineariza-
tion the boundary conditions on the walls are written in the following way:
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%T%+B(*§’%—§g)=o when y=0andy =1 (1.10)
[0
%:fﬂ (£)  wheny=°, 1.11)
o (1.12)

by =f(z) when y=0.

Equation (1.8) is of the elliptic type when M< 1 and of the hyperbolic type when M>1. When M&1 the
linear theory, as is known [4], is inapplicable.

In the case of an incompressible liquid (M=0) the function ® is harmonic and is found independently
[by using the boundary conditions (1.11) and (1.12)] of the relationships containing the electromagnetic
terms. The electric potential ¢ and & will be the real and imaginary parts of the analytical function [here
the boundary condition (1.10) is satisfied], i.e.,

0Py I:[o] 0P, files]

5z oy’ By Bw (1.13)

Substituting (1.13) in system (1.5) we find that jXIE 0, jy, =0, i.e., when M=0 the change in the
shape of the cross section does not give rise to electric currents. This is due to the fact that when B=const,
the induced potential difference in a channel with nonconducting walls depends only on the volume flow rate
of gas, which does not vary along the channel when M=0. Hence, the derived conclusion will still be valid
for any (not only a slow) change in channel shape and any (not necessarily vortex-free) flow at the outlet.

To prove this assertion we note that in an incompressible fluid components j, and jy can be written
in the form [5, 2]

, 1 o0 a0 ; 1 a0 e _
iR (C R R e e (R —RE) AR (1.19)

Q=9+,

Hence #is the fluid current function. On the channel walls (which are assumed to be nonconducting)
the condition 8 Q/dn=— £ Q/87 is fulfilled (7 and n are the unit vectors of the tangent and normal to the wall).
The formulated curve problem has solution* $=const; hence, it follows that j =0.

If the medium is incompressible, the volume flow rate G will not remain constant if the shape of the
section changes. When M<1 the value of G decreases or increases, depending on whether the cross-sec-
tional area I increases or decreases along the channelf. If the flow is supersonic, then dG/dx >0 when
dF/dx> 0 and dG/dx< 0 when dF/dx< 0. Hence, the induced potential difference between the bottom and top
channel walls varies with x,and this gives rise to eddy electric currents.

The system of Eq. (1.8)—(1.12), from which gasdynamic and electromagnetic parameters are de-
termined in the first approximation, can be solved with the aid of the Fourier transform.

2. We consider a flow with weak magnetohydrodynamic interaction when s<<1, Tn this case the
potential distribution is found from the well-known equation of linear gas dynamics,

20, 20

4=y S 22 =0. ©.1

We assume that the bottom wall of the channel is defined by the equation y=0, i.e., f~ =0.

We first investigate subsonic flows (62=1 —M2> 0).

*We note that if part of the channel walls is formed by the electrodes the solution $=const in the general
case does not satisfy the physical content of the problem. The solution for jx and jy must be derived from
a class of functions not bounded close to the contact points of the electrodes and insulators and in which the
form of the boundary conditions changes.

tThe indicated change in G occurs in the case of a weak magnetogasdynamic interaction.



According to the asymptotic condition at x=—% and the assumption of a bound for the function f *(x)
at x=« we have

| O (2, y)| < const exp (T.2), |@u(», y)|<constexp(v,z) when z——oc;
| @ (z, y) | <const exp (t_x), [di(x,y)|<constexp (v ») when z - oo;

0T < Ty s (2.2)

Equations (2.2) reflect the fact that functions ® and ¢ tend exponentially to zero when x— —« and
increase much more slowly when x— «. More precisely, when x— © ¢ is always bounded and the poten-
tial & varies linearly with x if ft(x) = const # 0 when x =« and bounded if the function f+ (x) at large x
oscillates about some constant value.

For the solution of system (2.1) and (1.9)-(1.12) we use the Fourier transform
+co
£° (v, oL)='._.1_.: S £(x, y)exp (iaz)dz  (e=v+it, 1_<T1<T,). (2.3)
Van

—0a

By the function ¢ here we mean the functions &(x,y), ¢;(x,y), and f+ (x). According to (2.2), £% will
be an analytical function of argument ¢ in the band T_<7< 74 [6].

The system of equations for the images of the required functions has the form

r o d2(D° . 3 d2q11° . — o

—gar0r  THL—0, o+ TR :—B( a20° -+
00

O (0, @) =0, @ (1,0)=1@)=—— S(d}‘“/dx)exp(ixx)dz,

Von )

d2q@e
dy® /)’

@° — fa®° —B (iap° + ©*) =0 for y=0and y=0. (2.4)

Here the prime denotes the derivative with respect to y.

The solution of system (2.4) is given by

o __ L{a)ch (aBy) o __ it (o) o — .
=—o5men) " T aveh oy ek 0v) chix(t—u)]+
- iB [sh [a (1 — y)] - eh (a8) sh (ay) — ch (a8y) sha]}. 2.5)

The originals &(x,y) and ¢4(x,y) are found by means of the inversion theorem [6]

oo-Fit* 1 ocofit*
@° exp (—iax)do, Qr=— ¢1° exp (— iux) da

V an —co=3i1*
0< 5 << Ty), (2.6)
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Integral (2.6) after specification of the function t(a) can be calculated by means of the residue theo-
rem.

Let the function ' (x) have the following form (Fig. 1):

o 0 whenz<{0 2.7
! (m)——{sinkxwhenm>0 @.7)

Here t(a) is given by

oy 16£10) P Y (2.8)
WW ® Vin (k8 — o)

J I

Fig. 1
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Substituting (2.8) into Egs. (2.6) and using the residue theorem and Jordan's lemma [7] we find that
for calculation of the integrals (2.6) when x>0 we have to sum the residues of the integrands in the region
T< 7%, and when x< 0 we have to sum the residues in the region 7> 7%,

Ag a result of the calculations we find:

[e]

N Eo<Q n+l COS (nmy) exp (— nax [/ 6)
D=0 y>+—zl< —1) T (vt [0
3 M kz) ch (kS 1
n=0 @yt nt ks OE Y= Y- e (5?1fka( - (2.9
O (z, ¥)= S?ITI%TB— {sin kz [ch (k8) ch (ky)] —ch [k (1 —y)] —
—Bcos kz [sh [k (1 —y)] - ch (k8) sh (kSy) sh k} (2.10)
LS SR e U @) B @),
B= 2 =4 (k;L-{— rpd)sinr, Ly
ne=1
Yo = (—1)™ cos (ray) —cos[r, (1 —)]
%y ==sin [rp (1 — )] -+ (—1)"sin (r,y) — cos (r,, 8y) sinry, (2.11)

N g n €SP (— 0 [ () BV (]
B= ) e T

n=1
By, = 008 (7,,0) €08 (gn¥) — €08 [¢, (1 — )]
v == 8in [qy, (1 — g)] - ¢05 (¢,,5) sin (gny)

O — "‘Z( ) c0s (rnby) exp (rp)

P
%<0 i +-rn

x<u (k24 r2)sinry, (k2 4+ g5?) sin 9, 8

. k < '’ n — < —1 n' 7
L = z:} )™ exp (rn2) [¥n (¥) an(?/)1+§2( )™ €XP (95%) [Ibn (¥) — BV, 1 2.12)

n=1

The functions &* (x,y) and ¢*(x,y) given by (2.10) are the periodic nondecaying part of the solution at
large x and due to sinusoidal variation of the channel profile. The currents jy* and jy* corresponding to
this part of the solution are given by the formulas

ca__ kcoskx 3 _ 1—
Jx' = FShTis) Sh R Y [6 sh (k8y) sh &k — ch (k) eh (ky) 4 ch [k ( il

c«_  ksinkx . . - .
e Y {ch (kBy) sh k — ch (k5) sh (ky) —sh [k (1 — y)]] (2.13)

From (2.13), the distribution of currents jx* and ] * (as distinct from the potential) is independent of
the Hall parameter 3.

The Joule dissipation q in the volume of the channel 0<y<1, (N7/k)<x<{(N+1) 7/k (N>1), corre-
sponding to the wave halflength n/k, is given by the expression

- Tk 1482 1—6 o Sh (2k)
7 26251121:6[ 255 SR+ (P =

- él_ch k sh[l/z B+ 8)]sh[Vak (1 —8)]— % sh k ch (ka)]

(=)

AR

§ (Zx.z 47, dudy, zzc_ligﬁ‘}:(ﬂ) (2.14)
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Relationships q(k) for different Mach numbers
are shown in Figs. 2 and 8. With increase in M the
Joule loss increases. The greatest increase in the
dissipation g occurs when M is close to unity. It
should be borne in mind, however, that the linear
approximation is less accurate in this case. With re-
duction in k the Joule dissipation tends to zero, since
the rate of change of the channel profile is reduced.

With increase in k the Joule dissipation within a
halfwave (and in any fixed volume of the channel) in-
creases. As (2.14) shows, g — < when k— . Linear
theory and (2.14) derived from it, however, are in-
applicable at large k owing to the unbounded increase
in the modulus of the derivative /¥ '(x). The formal
explanation of the unbounded increase in q when k— =
is that reduction of the wavelength 1/7k is accompanied
by an increase in the kinetic energy of the flow.

The electric current lines in the channel at large x are shown in Fig. 4. The greatest potential dif-
ference between the bottom and top walls is induced in the cross sections xy=(3/2r x 2Nn)/k, and the
least in xy=(1/27 +2N7)/k (N is a large whole number). In the cross sections xN the gas flow is char-
acterized by the greatest, and in cross sections x,N by the least, volume flow rate. Electric current distri-
bution agrees with the mentioned features of the potential distribution.

3. We consider a supersonic gas flow (M>1). We assume that f~(x) =0, s=0, =0, and f* (x) is given
by (2.7). By means of the Fourier transform we find the images 3% and (p,‘)of the functions and then their
originals

oo--it*

= k . cos (aoy) exp (— iox) da
T 2mb S (F— &%) sin (aw) (@=M—1,0r_ <" <)
—oo-Fit*
cofit*
o= k i[eh[a (1 — y)] — cos (aw) ch (ay)] exp (— iax) da
BT S (%* — a?) shoosin (o) : 3.1)
—cc-ir®
Using the residue theorem we find
_ 1 cos(koy)cos(kr) , 2k < 4y €08 (I, WY) COS Iy _n (3.2)
,go_ To? © sin (ko) + o? El( R [z . (rn © )'
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__ sin (k) [ch [k (1 — y)] — cos (ko) ch (ky)]
x?o - osh ksin (ko)

2k < ni1 Sin(rpz) [oh [ra (1 —¥)] +(_‘1)n+10h (ra¥)]
+55 A

(k2 —rp?)shr,

n=1
k __qyn €XD (— (]nib‘) in (J) (3 R 3)
t o A B g e )
— _ b N (—1)"exp (gx2) En ()
x(i)o =0 x<0 Z (/2 4+ g,?) sh (¢,0)
(@n =77, §n (y) =c0s gy (1 — 9)] — ch (g,0) €05 (gny)). (3.4)

It was assumed in deriving (3.2~(3.4) that k does not coincide with any value of T

As the obtained formulas show, the velocity distribution at large x depends not only on the '"local"
geometry of the channel [the first two terms in (3.2)], but also on the perturbations which are propagated,
according to the characteristics, downstream from the cross section x=0 and are repeatedly reflected from
the channel walls (the third term in this formula).

Despite the fact that there are no velocity perturbations at x< 0 (the velocity perturbations are zero
left of the characteristic y=1-xw™Y, the electric currents in this region differ from zero.

According to (3.4), the current jy is negative for y=0 and positive for y=1. This is consistent with
the fact that in the region 0<x<1/27k~! the potential difference between the bottom and top walls increases
steadily with increase in x.

The volume flow rate G of the gas on the basis of (1.2) and (3.2) is given by the formula

1

G__S dy 1 when <0
=3 y~[1—{-—esin(kz)/m2 when z>0.
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